

14 octobre 2022

Polluants émergents, un enjeu pour les ressources en eau destinées à la consommation humaine Partageons les connaissances!

Campagnes de diagnostic pour identifier les polluants émergents dans le cadre d'un usage AEP

Par Christophe ROSIN

Directeur par intérim

AGENCE NATIONALE DE SÉCURITÉ SANITAIRE de l'alimentation, de l'environnement et du travail Laboratoire d'Hydrologie de Nancy

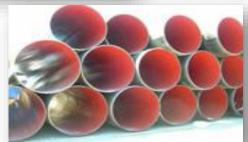
Déroulement des campagnes

Programme pluriannuel de travail DGS/ ANSES-LHN depuis 2008

Occurrence et niveaux de contamination des substances émergentes

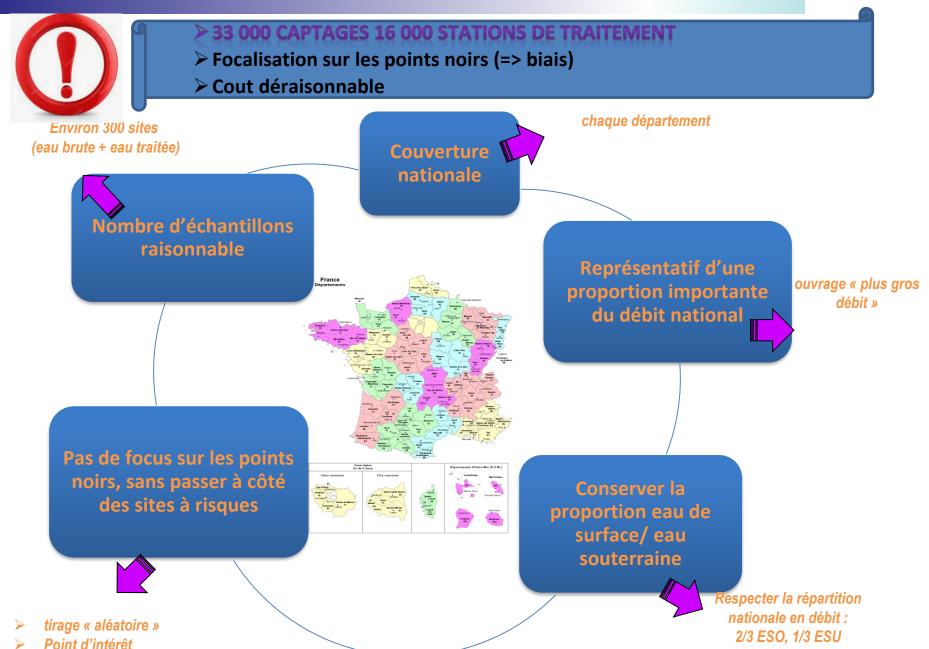
Données d'exposition en vue d'ERS

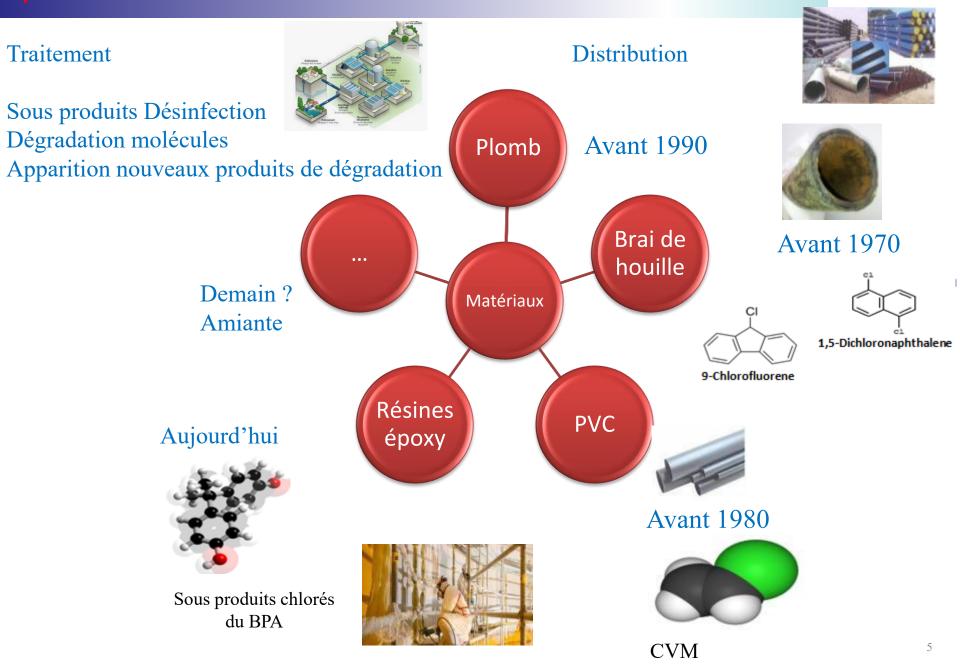
Présents dans la ressource


- Médicaments humains et vétérinaires
- PFAS,
- Métabolites pesticides
- 1, 4 dioxane, résidus explosifs

- Phtalates
- Perchlorates
- Chrome VI
- AP-BPA

Impactés par les filières de traitement

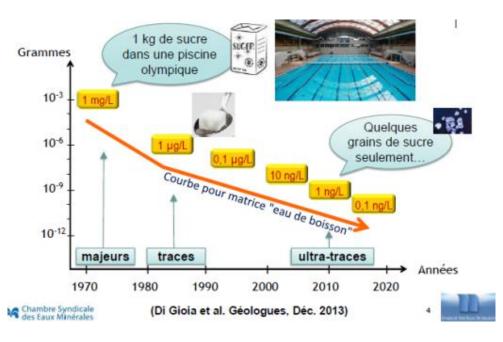

- Nitrosamines
- HAA, HAN, iTHM


Liés à la distribution de l'eau

- CVM
- AP-BPA
- HAP chlorés

Echantillonnage : contraintes et stratégies

Spécificités Eaux de consommation : Traitement et distribution de l'eau:


Profil type d'une substance préoccupante

Difficultés d'élimination :

- Molécules polaires
- Ionisées au pH habituels de l' EDCH
- Faible PM
- ½ vie importante et /ou métabolites rémanents
- Faible Koc
- Propriétés ? CMR / PE / Génotoxique / Reprotoxique

Un prérequis méthode robuste

- Evolution des techniques analytiques : éviter la course à la recherche d'ultra traces
- Attention aux risques de faux positifs
 - Prélèvements
 - Analyses

Les enseignements de ces campagnes

Rôle clés des acteurs locaux

- tous les départements impliqués,
- participation des DT ARS pertinente à la stratégie d'échantillonnage,
- réalisation des prélèvements,
- analyses de confirmation, échange sur contexte environnemental et mesures de gestion le cas échéant, interfaçage avec les DREAL.

Diversité des signaux à l'origine de ces campagnes

- Alerte locale (perchlorates, Thallium, MVC) ou dans pays voisins (PFAS)
- Projet révision directive européenne EDCH et travaux d'expertise collective CES eaux (NDMA)
- Préoccupation sociétale et médiatique
- Veille bibliographique (iTHM -HAN...)
- Réévaluation des risques sanitaires (CrVI)
- Stratégie nationale PE multi exposition

Les enseignements de ces campagnes

Anticipation et meilleure compréhension

- Amont évolutions réglementaires
- Connaissance / compréhension et actions correctives

Les limites de ces campagnes

- Choix des molécules
- Limites d'un échantillonnage aléatoire, seulement 1% des captages analysés, 20 % de la production d'EDCH
- Non prise en compte de saisonnalité dans ces campagnes exploratoires

Des résultats parfois inattendus

- Des SPD (NMOR) présents dans la ressource
- Des pesticides (anthraquinone) en réseaux de distribution et absents de la ressource
- Des teneurs en PFAS supérieurs en sortie de filières qu'en entrée.

- 150 pesticides (dont 100 métabolites)
- 2 solvants
- 53 résidus explosifs
- 140 000 résultats

- Connaissance fine au niveau de la région
- Soutien ARS GE
- Implication acteurs régionaux (ARS, AERM, DRAAF, BRGM Région...)
- > 40 000 résultats

nesidus Explosiis.

Origines liées à la première guerre mondiale : zones de fronts, sites de stockage, désobusage...

Sites désormais bien cartographiés

Autres molécules concomitantes ?

Etat des lieux sur la présence de résidus d'explosifs dans les eaux destinées à la consommation humaine

<u>Avis 9 juin 2016</u>: ERS sur un site pollué par des constituants de munitions chimiques dans la Meuse :

BRGM : diagnostic environnemental : site de destruction d'obus chimiques

Trinitrotoluène (TNT)

Nitrobenzène

2- Nitrophénol

Nitrotoluène (2-NT, 3-NT, 4-NT)

Diamino-Nitrotoluène (24-DA-6-NT, 24-DA-6-NT)

Dinitrotoluène (23-DNT, 24-DNT, 25-DNT, 26-DNT, 34-DNT, 35-DNT)

Amino-Dinitrotoluène (2-A-46-DNT, 4-A-26-DNT)

Tétranitro-azotoluène (22'-AZO)

Tétranitro-azoxytoluène (22'-AZOXY, 44'-AZOXY)

Trinitrobenzène (135-TNB)

Octogène (HMX)

Mononitroso-HMX

Hexogène (RDX)

TNX

Diphénylamine (DPA)

Tétrvl

N-MéthylPicramide

Dinitroglycérine (12-DNG, 13-DNG)

Dinitrobenzène (12-DNB, 13-DNB, 14-DNB)

Nitronaphtalène (1-NN, 2-NN)

Dinitronaphtalène (13-DNN, 15-DNN, 16-DNN, 18-DNN)

Trinitronaphtalène (135-TNN, 138-TNN, 145-TNN)

Dinitroaniline (35-DNA)

Dinitrochlorobenzène (DNCB)

Hexyl

1

246-Trinitrophénol (PA)

Tétranitrate de pentaérythritol (PETN)

Dinitroanisole (DNAN)

Trinitrocrésol (Crésylite)

ChloroNitrobenzène

(1-Cl-2-NB, 1-Cl-3-NB, 1-Cl-4-NB)

Nitroaniline (2-NA)

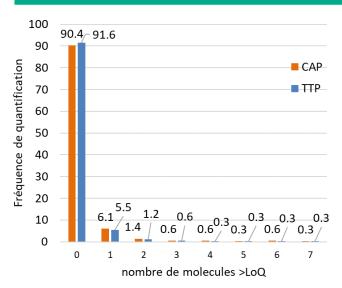
Nitro-Diphénylamine

(2-NitroDPA, 4-NitroDPA)

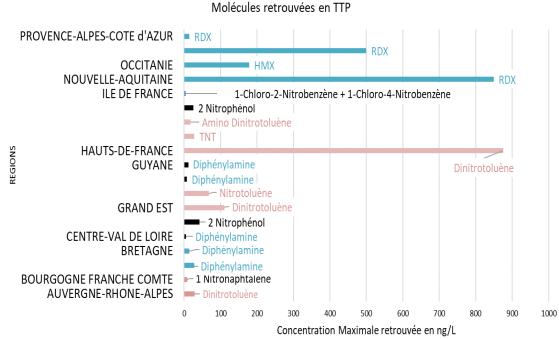
23-Diméthyl-2,3-dinitrobutane (DMNB)

Molécule: molécule d'origine historique **Molécule**: origine historique et actuelle

Molécule: Métabolite


Molécule: adjuvant, stabilisant, propulseur

Molécule: molécule non analysée


Réunion de restitution aux ARS - 30 septembre 2022

Résidus Explosifs : Bilan

Moins de 10% des échantillons avec au moins une molécule quantifiée

Molécules quantifiées

Contamination plutôt historique:

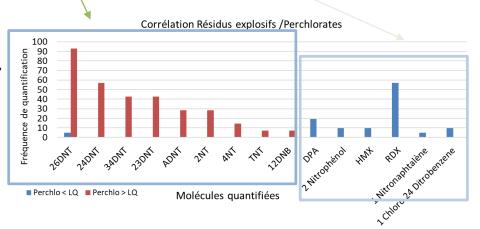
Haut de France et Grand Est <u>Contamination plutôt actuelle</u>:

Nouvelle Aquitaine et Occitanie

Résidus explosifs: Corrélation Explosifs -Perchlorates

САР	XPLO < LQ	XPLO > LQ
Perchlorates < LQ	79,6 %	5,8 %
Perchlorates > LQ	10,7 %	3,9 %

Résidus explosifs > LQ et Perchlorates > LQ



quantification principalement les métabolites du TNT (26 DNT, 24DNT, ADNT, NT, etc)

Résidus explosifs > LQ et Perchlorates < LQ

quantification principalement les molécules contemporaines/historiques (RDX, HMX, DPA, etc)

Réunion de restitution aux ARS - 30 septembre 2022

30/09/2022

Illustration campagne nationale en cours pour les pesticides

155 composés recherchés : 2/3 métabolites

78 composés quantifiés (interdits et autorisés)

20 SA; 1 mixte; 54 métabolites; 3 isomères

Nombre de molécules

	Médiane	Perc. 90
CAP	5	15
TTP	3	10

35 molécules > 0,1 μg/L :

7 SA (16 % des SA recherchées)

• 28 métabolites (27 % des métabolites recherchés)

80 % quantification en captages [Eaux Sup] > [Eaux sout] [Captages] > [Eaux traitées]

Impact chloration / stabilisation échantillons: Effet masquant – dégradation ?

Station de traitement	MTC ESA < 0,1	MTC ESA > 0,1
Autres métabolites < 0,1	261 (87%)	31 (10%)
7 Autres métabolites > 0,1	0	9 (3%)

Travaux exploratoires

Surveillance

ARS ANSES AERM DRAAF DREAL

Égalité Fraternite

Direction générale de la santé Sous-direction Prévention des risques liste à l'environnement et à l'alimentation Bureau Qualité des eaux

Personne chargée du dossier : Nathalie FRANQUES Tél. : 01 40 56 69 18

Le directeur général de la santé

Mesdames et Messieurs les directeurs généraux des agences régionales de santé (ARS)

Copie :

Mesdames et Messieurs les préfets de région et de département

INSTRUCTION N° DGS/EA4/2020/177 du 18 décembre 2020 relative à la gestion des risques sanitaires en cas de présence de pesticides et métabolites de pesticides dans les eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées.

Chlorothalonil 471811 Desphenyl chloridazone

274 SA approuvées
1977 métabolites recensés
=> Hiérarchisation!

Surv. Campagnes environt **ANSES** (BNVD **PPV** DRIS)

Contrôle sanitaire

Données nationales Données régionales

> AERM DREAL APRONA

500 molécules => 200 molécules Nombre métabolites en hausse chercher moins mais chercher mieux !

Complémentarité analytique / étude des effets

Rôle des filières de traitements (métabolites / sous produits

Échanges et Bancarisation des données /

